Name: \qquad

1. Given the linear system of equations

$$
\left\{\begin{array}{rl}
2 x_{1}-6 \alpha x_{2} & =3 \\
3 \alpha x_{1} & -x_{2}
\end{array}=\frac{3}{2}\right.
$$

Find value(s) of α for which the system has no solutions. Find value(s) of α for which the system has an infinite number of solutions. Assuming a unique solution exists for a given alpha, find the solution.
2. For what values of α does naive Gaussian elimination produce erroneous answers for this system

$$
\left\{\begin{array}{rl}
x_{1}+x_{2} & =2 \\
\alpha x_{1} & +x_{2}
\end{array}=2+\alpha\right.
$$

Explain what happens in the computer.
3. Show that the following equations are consistent if and only if, $a=+1$ or $a=-1$.

$$
\left\{\begin{aligned}
x+y+z & =1+a^{2} \\
x+2 y+3 z & =-2 a \\
x+3 y+4 z & =-4 a \\
x+2 y+2 z & =2(1-a)
\end{aligned}\right.
$$

4. Apply naive Gaussian elimination to the systems of equations below and account for the failures.

- $\left\{\begin{aligned} x_{1}+x_{2}+2 x_{3} & =4 \\ x_{1}+x_{2} & =2 \\ x_{2}+x_{3} & =0\end{aligned}\right.$
- $\left\{\begin{array}{r}0 x_{1}+2 x_{2}=4 \\ x_{1}-x_{2}=5\end{array}\right.$

5. Consider

$$
\mathbf{A}=\left[\begin{array}{ll}
0.780 & 0.563 \\
0.913 & 0.659
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
0.217 \\
0.254
\end{array}\right], \quad \tilde{\mathbf{x}}=\left[\begin{array}{r}
0.999 \\
-1.001
\end{array}\right], \quad \hat{\mathbf{x}}=\left[\begin{array}{r}
0.341 \\
-0.087
\end{array}\right]
$$

Compute residual vectors $\tilde{r}=A \tilde{x}-b$ and $\hat{r}=A \hat{x}-b$ and decide which of \tilde{x} and \hat{x} is the better solution vector. Now compute the error vectors $\tilde{e}=\tilde{x}-x$ and $\hat{e}=\hat{x}-x$, where $x=[1,-1]^{T}$ is the exact solution. Discuss the implications of this example.
6. Solve the system below using naive Gaussian elimination.

$$
\left\{\begin{array}{r}
3 x_{1}+2 x_{2}-5 x_{3}=0 \\
2 x_{1}-3 x_{2}+x_{3}=0 \\
x_{1}+4 x_{2}-x_{3}=4
\end{array}\right.
$$

7. Consider the systems of equations

$$
\left\{\begin{aligned}
2 x_{1}+4 x_{2}-2 x_{3} & =6 \\
x_{1}+3 x_{2}+4 x_{3} & =0 \\
5 x_{1}+2 x_{2} & =2
\end{aligned}\right.
$$

and

$$
\left\{\begin{array}{rl}
2 x_{1}+3 x_{2} & =8 \\
-x_{1}+2 x_{2}-x_{3} & =0 \\
3 x_{1}+ & 2 x_{3}
\end{array}=9 .\right.
$$

In each case, solve for x_{1}, x_{2} and x_{3} using Gaussian elimination with partial pivoting. Show all intermediate matrices and vectors.
8. Prove that

- $2^{n}<n$! for every positive integer n with $n \geq 4$.
- $\sum_{k=1}^{n} 2^{k}=2^{n+1}-2$

9. How many storage locations are needed for a system of n linear equations if the coefficient matrix has banded structure in which $a_{i j}=0$ for $|i-j| \geq k+1$?
10. Give an example of a system of linear equations in tridiagonal form that cannot be solved without pivoting.
11. What is the appearance of a matrix A if its elements satisfy $a_{i j}=0$ when

- $j<i-2$
- $j>i+1$

12. Determine whether the matrices below are symmetric and strictly diagonally dominant.

$$
A=\left[\begin{array}{rrr}
7 & 2 & 0 \\
3 & 5 & -1 \\
0 & 5 & -6
\end{array}\right] \quad B=\left[\begin{array}{rrr}
4 & 2 & 6 \\
3 & 0 & 7 \\
-2 & -1 & -3
\end{array}\right] \quad C=\left[\begin{array}{rr}
-2 & 1 \\
1 & -3
\end{array}\right]
$$

