MAT 442(01) – Spring 2013

Introduction to Numerical Analysis

Murray State University Murray, KY 42071

Name : ___

1. Given the linear system of equations

 $\begin{cases} 2x_1 - 6\alpha x_2 = 3\\ 3\alpha x_1 - x_2 = \frac{3}{2} \end{cases}$

Find value(s) of α for which the system has no solutions. Find value(s) of α for which the system has an infinite number of solutions. Assuming a unique solution exists for a given alpha, find the solution.

2. For what values of α does naive Gaussian elimination produce erroneous answers for this system

$$\left\{ \begin{array}{rrrr} x_1 & + & x_2 & = & 2 \\ \alpha x_1 & + & x_2 & = & 2 + \alpha \end{array} \right.$$

Explain what happens in the computer.

3. Show that the following equations are consistent if and only if, a = +1 or a = -1.

$$\begin{cases} x + y + z = 1 + a^2 \\ x + 2y + 3z = -2a \\ x + 3y + 4z = -4a \\ x + 2y + 2z = 2(1-a) \end{cases}$$

4. Apply naive Gaussian elimination to the systems of equations below and account for the failures.

	ſ	x_1	+	x_2	+	$2x_3$	=	4
•	{	x_1	+	x_2			=	2
	J			x_2	+	x_3	=	0

•
$$\begin{cases} 0x_1 + 2x_2 = 4 \\ x_1 - x_2 = 5 \end{cases}$$

5. Consider

$$\mathbf{A} = \begin{bmatrix} 0.780 & 0.563 \\ 0.913 & 0.659 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 0.217 \\ 0.254 \end{bmatrix}, \qquad \tilde{\mathbf{x}} = \begin{bmatrix} 0.999 \\ -1.001 \end{bmatrix}, \qquad \hat{\mathbf{x}} = \begin{bmatrix} 0.341 \\ -0.087 \end{bmatrix}$$

Compute residual vectors $\tilde{r} = A\tilde{x} - b$ and $\hat{r} = A\hat{x} - b$ and decide which of \tilde{x} and \hat{x} is the better solution vector. Now compute the error vectors $\tilde{e} = \tilde{x} - x$ and $\hat{e} = \hat{x} - x$, where $x = [1, -1]^T$ is the exact solution. Discuss the implications of this example.

6. Solve the system below using naive Gaussian elimination.

ſ	$3x_1$	+	$2x_2$	_	$5x_3$	=	0
ł	$2x_1$	—	$3x_2$	+	x_3	=	0
l	x_1	+	$4x_2$	—	x_3	=	4

7. Consider the systems of equations

	($2x_1$	+	$4x_2$	_	$2x_3$	=	6	
	{	x_1	+	$3x_2$	+	$4x_3$	=	0	
	l	$5x_1$	+	$2x_2$			=	2	
and		-							
and	($2x_1$	+	$3x_2$			=	8	
	{	$-x_1$	+	$2x_2$	_	x_3	=	0	•
	l	$3x_1$	+			$2x_3$	=	9	

In each case, solve for x_1 , x_2 and x_3 using Gaussian elimination with partial pivoting. Show all intermediate matrices and vectors.

- 8. Prove that
 - $2^n < n!$ for every positive integer n with $n \ge 4$.

•
$$\sum_{k=1}^{n} 2^k = 2^{n+1} - 2$$

- 9. How many storage locations are needed for a system of n linear equations if the coefficient matrix has banded structure in which $a_{ij} = 0$ for $|i j| \ge k + 1$?
- 10. Give an example of a system of linear equations in tridiagonal form that cannot be solved without pivoting.
- 11. What is the appearance of a matrix A if its elements satisfy $a_{ij}=0$ when
 - j < i 2
 - j > i + 1
- 12. Determine whether the matrices below are symmetric and strictly diagonally dominant.

$$A = \begin{bmatrix} 7 & 2 & 0 \\ 3 & 5 & -1 \\ 0 & 5 & -6 \end{bmatrix} \qquad B = \begin{bmatrix} 4 & 2 & 6 \\ 3 & 0 & 7 \\ -2 & -1 & -3 \end{bmatrix} \qquad C = \begin{bmatrix} -2 & 1 \\ 1 & -3 \end{bmatrix}$$