Name : \qquad

TO RECEIVE FULL CREDIT YOU MUST SHOW ALL YOUR WORK (Unless otherwise stated).

1. State the order of convergence of the methods listed below when used to determine the zeros of a given nonlinear function $f(x)$.

- the Bisection method
- the Newton-Raphson method
- the Secant method

2. How many steps of the bisection method are needed to determine the root with an error of at most $\frac{1}{2} \times 10^{-12}$, if the starting interval is $[0.2,1.8]$?
3. Every polynomial of degree n has n zeros (counting multiplicity) in the complex plane.

- Does every real polynomial have n real zeros?
- Does every polynomial of infinite degree $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ have infinitely many zeros?

4. Compute the zero of $f(x)=x^{3}-3 x+1$ on $[0,1]$ using the Bisection method. Carry out just three steps.
5. If Newton's method is used on $f(x)=x^{3}-x+1$ starting with $x_{0}=-2$, what will x_{3} be?
6. If we use the secant method on $f(x)=x^{3}-2 x+2$ starting with $x_{0}=0$ and $x_{1}=1$, what is x_{3} ?
