1. Why do the following functions not posses Taylor series expansion at $x=0$?

- $f(x)=\sqrt{x}$
- $f(x)=|x|$
- $f(x)=\arcsin (x-1)$
- $f(x)=\cot x$
- $f(x)=\log x$
- $f(x)=x^{\pi}$

2. Use Horner's algorithm to deflate the polynomial $p(x)=x^{4}-4 x^{3}+7 x^{2}-5 x-2$ by removing the linear factor $(x-3)$. Hence evaluate $p(3)$.
3. What is the relative error involved in rounding 0.3720214371 to five decimal digits of accuracy?
4. Determine the first two nonzero terms of the series expansion about zero for the following

- $e^{\sin x}$
- $\sin (\cos x)$

5. Convert the decimal numbers to binary.

- $(256)_{10}$
- $(0.328)_{10}$

6. Convert the binary number $(0.110101)_{2}$ to decimal.
7. Enumerate the set of numbers in the floating-point number system that have binary representation of the form

$$
\pm\left(0 . b_{1} b_{2}\right) \times 2^{k}, \text { where } k \in\{-1,1\}
$$

8. In the subtraction $0.06666666667-0.06661729492$, how many bits of significance will be lost?
9. How can values of the function $f(x)=\sqrt{x+4}-2$ be computed accurately when x is small?
10. For what values of x may loss of significance occur in the computation of $f(x)=\log (x+1)-\log x$. How can that loss of significance be minimized.
11. Let $f(x)=\frac{1-x}{1+x}-\frac{1}{3 x+1}$. For very small values of x, loss of significance can occur. How can you minimize loss of significance?
12. What difficulty could the following assignment cause?

$$
y \leftarrow 1-\sin x .
$$

Circumvent it without resorting to a Taylor series if possible.
13. Solve the equation $x^{2}-10^{5} x+1=0$ with a machine that carries only eight decimal digits.

