Name : $\qquad$

1. Show that the system of equations

$$
\left\{\begin{array}{r}
x_{1}+4 x_{2}+\alpha x_{3}=6 \\
2 x_{1}-x_{2}+2 \alpha x_{3}=3 \\
\alpha x_{1}+3 x_{2}+x_{3}=5
\end{array}\right.
$$

possesses a unique solution when $\alpha=0$, no solution when $\alpha=-1$, and infinitely many solutions when $\alpha=1$.
2. Apply naive Gaussian elimination to the systems of equations below and account for the failures.

- $\left\{\begin{aligned} 3 x_{1}+2 x_{2} & =4 \\ -x_{1}-\frac{2}{3} x_{2} & =1\end{aligned}\right.$
- $\left\{\begin{array}{rlrr}6 x_{1} & -3 x_{2} & = & 6 \\ -2 x_{1} & + & x_{2} & = \\ -2\end{array}\right.$
- $\left\{\begin{array}{r}0 x_{1}+2 x_{2}=4 \\ x_{1}-x_{2}=5\end{array}\right.$

3. Consider

$$
\mathbf{A}=\left[\begin{array}{ll}
0.780 & 0.563 \\
0.913 & 0.659
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
0.217 \\
0.254
\end{array}\right], \quad \tilde{\mathbf{x}}=\left[\begin{array}{r}
0.999 \\
-1.001
\end{array}\right], \quad \hat{\mathbf{x}}=\left[\begin{array}{r}
0.341 \\
-0.087
\end{array}\right] .
$$

Compute residual vectors $\tilde{r}=A \tilde{x}-b$ and $\hat{r}=A \hat{x}-b$ and decide which of $\tilde{x}$ and $\hat{x}$ is the better solution vector. Now compute the error vectors $\tilde{e}=\tilde{x}-x$ and $\hat{e}=\hat{x}-x$, where $x=[1,-1]^{T}$ is the exact solution. Discuss the implications of this example.
4. Solve the system below using naive Gaussian elimination.

$$
\left\{\begin{array}{r}
3 x_{1}+2 x_{2}-5 x_{3}=0 \\
2 x_{1}-3 x_{2}+x_{3}=0 \\
x_{1}+4 x_{2}-x_{3}=4
\end{array}\right.
$$

5. Consider the systems of equations

$$
\left\{\begin{aligned}
2 x_{1}+4 x_{2}-2 x_{3} & =6 \\
x_{1}+3 x_{2}+4 x_{3} & =0 \\
5 x_{1}+2 x_{2} & =2
\end{aligned}\right.
$$

and

$$
\left\{\begin{array}{rl}
2 x_{1}+3 x_{2} & =8 \\
-x_{1}+2 x_{2}-x_{3} & =0 \\
3 x_{1}+ & 2 x_{3}
\end{array}=9 .\right.
$$

In each case, solve for $x_{1}, x_{2}$ and $x_{3}$ using Gaussian elimination with partial pivoting. Show all intermediate matrices and vectors.
6. Derive the formulae

- $\sum_{k=1}^{n} k=\frac{n}{2}(n+1)$
- $\sum_{k=1}^{n} k^{2}=\frac{n}{6}(n+1)(2 n+1)$

7. How many storage locations are needed for a system of $n$ linear equations if the coefficient matrix has banded structure in which $a_{i j}=0$ for $|i-j| \geq k+1$ ?
8. Give an example of a system of linear equations in tridiagonal form that cannot be solved without pivoting.
9. What is the appearance of a matrix $A$ if its elements satisfy $a_{i j}=0$ when

- $j<i-2$
- $j>i+1$

10. Determine whether the matrices below are symmetric and strictly diagonally dominant.

$$
A=\left[\begin{array}{rrr}
7 & 2 & 0 \\
3 & 5 & -1 \\
0 & 5 & -6
\end{array}\right] \quad B=\left[\begin{array}{rrr}
4 & 2 & 6 \\
3 & 0 & 7 \\
-2 & -1 & -3
\end{array}\right] \quad C=\left[\begin{array}{rr}
-2 & 1 \\
1 & -3
\end{array}\right]
$$

