Murray State University Murray, KY 42071

Name : __

- 1. What is the numerical value of the composite trapezoid rule applied to the reciprocal function $f(x) = x^{-1}$ using the points 1, $\frac{4}{3}$, and 2.
- 2. Compute the approximate value of $\int_0^1 (x^2 + 1)^{-1} dx$ by using the composite trapezoid rule with three points. Then compare with the actual value of the integral.
- 3. If the composite trapezoid rule is used to compute $\int_{-1}^{2} \sin x \, dx$ with h = 0.01, give a realistic bound on the error.
- 4. How large must n be if the composite trapezoid rule is being used to estimate $\int_0^{\pi} \sin x \, dx$ with error $\leq 10^{-12}$? Will the estimate be too big or too small?
- 5. Consider $\int_{1}^{2} dx/x^{3}$. What is the result of using the composite trapezoid rule with the partition points 1, $\frac{3}{2}$, and 2?
- 6. Approximate $\int_0^2 2^x dx$ using the composite trapezoid rule with $h = \frac{1}{2}$.

7. We want to approximate $\int_{1}^{2} f(x) dx$ given the table of values. Compute an estimate by the composite trapezoid rule. Can upper and lower sums be computed from the given data?

X	1	$\frac{5}{4}$	$\frac{3}{2}$	$\frac{7}{4}$	2
f(x)	10	8	7	6	5

- 8. Compute $\int_0^1 (1+x^2)^{-1} dx$ by the basic Simpson's Rule, using the three partition points x = 0, 0.5, and 1. Compare with the true solution.
- 9. Find an approximate value of $\int_1^2 x^{-1} dx$ using the basic Simpson's Rule with uniform spacing. Give a bound on the error.
- 10. Find a formula of the type

$$\int_0^1 f(x) \ dx \approx \alpha f(0) + \beta f(1)$$

that gives correct values for f(x) = 1 and $f(x) = x^2$. Does your formula give the correct value when f(x) = x?

11. Approximate

$$\int_0^2 e^{-x^2} \ dx$$

using the three point Gaussian Quadrature formula

$$\int_{-1}^{1} f(x) \, dx \approx \frac{5}{9} f\left(-\sqrt{\frac{3}{5}}\right) + \frac{8}{9} f(0) + \frac{5}{9} f\left(\sqrt{\frac{3}{5}}\right).$$