Name : \qquad

1. What is the numerical value of the composite trapezoid rule applied to the reciprocal function $f(x)=x^{-1}$ using the points $1, \frac{4}{3}$, and 2 .
2. Compute the approximate value of $\int_{0}^{1}\left(x^{2}+1\right)^{-1} d x$ by using the composite trapezoid rule with three points. Then compare with the actual value of the integral.
3. If the composite trapezoid rule is used to compute $\int_{-1}^{2} \sin x d x$ with $h=0.01$, give a realistic bound on the error.
4. How large must n be if the composite trapezoid rule is being used to estimate $\int_{0}^{\pi} \sin x d x$ with error $\leq 10^{-12}$? Will the estimate be too big or too small?
5. Consider $\int_{1}^{2} d x / x^{3}$. What is the result of using the composite trapezoid rule with the partition points $1, \frac{3}{2}$, and 2 ?
6. Approximate $\int_{0}^{2} 2^{x} d x$ using the composite trapezoid rule with $h=\frac{1}{2}$.
7. We want to approximate $\int_{1}^{2} f(x) d x$ given the table of values. Compute an estimate by the composite trapezoid rule. Can upper and lower sums be computed from the given data?

x	1	$\frac{5}{4}$	$\frac{3}{2}$	$\frac{7}{4}$	2
$\mathrm{f}(\mathrm{x})$	10	8	7	6	5

8. Compute $\int_{0}^{1}\left(1+x^{2}\right)^{-1} d x$ by the basic Simpson's Rule, using the three partition points $x=0,0.5$, and 1 . Compare with the true solution.
9. Find an approximate value of $\int_{1}^{2} x^{-} 1 d x$ using the basic Simpson's Rule with uniform spacing. Give a bound on the error.
10. Find a formula of the type

$$
\int_{0}^{1} f(x) d x \approx \alpha f(0)+\beta f(1)
$$

that gives correct values for $f(x)=1$ and $f(x)=x^{2}$. Does your formula give the correct value when $f(x)=x$?
11. Approximate

$$
\int_{0}^{2} e^{-x^{2}} d x
$$

using the three point Gaussian Quadrature formula

$$
\int_{-1}^{1} f(x) d x \approx \frac{5}{9} f\left(-\sqrt{\frac{3}{5}}\right)+\frac{8}{9} f(0)+\frac{5}{9} f\left(\sqrt{\frac{3}{5}}\right)
$$

