Name : \qquad

1. Verify that the polynomials

$$
p(x)=5 x^{3}-27 x^{2}+45 x-21, \quad q(x)=x^{4}-5 x^{3}+8 x^{2}-5 x+3
$$

interpolate the data below, and explain why this does not violate the uniqueness part of the theorem on existence of polynomial interpolation.

x	1	2	3	4
y	2	1	6	47

2. Use the Lagrange interpolation process to obtain a polynomial of least degree that assumes these values:

x	1	3	-2	4	5
y	2	6	-1	-4	2

3. Consider the data

x	0	1	3	2	5
$\mathrm{f}(\mathrm{x})$	2	1	5	6	-183

Construct the divided-difference table and using Newton's interpolation polynomial, find an approximation to $f(2.5)$.
4. It is suspected that the table below comes from a cubic polynomial. How can this be tested? Explain.

x	-2	-1	0	1	2	3
$\mathrm{f}(\mathrm{x})$	1	4	11	16	13	-4

5. How accurately can we determine $\sin x$ by linear interpolation, given a table of $\sin x$ to ten decimal places, for x in $[0,2]$ with $h=0.001$?
6. Using Taylor series, establish the error term for the formula

$$
f^{\prime}(0) \approx \frac{1}{2 h}[f(2 h)-f(0)] .
$$

7. Criticize the following analysis. By Taylor's formula, we have

$$
\begin{aligned}
& f(x+h)-f(x)=h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)+\frac{h^{3}}{6} f^{\prime \prime \prime}\left(\xi_{1}\right) \\
& f(x-h)-f(x)=-h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)-\frac{h^{3}}{6} f^{\prime \prime \prime}\left(\xi_{2}\right)
\end{aligned}
$$

Therefore

$$
\frac{1}{h^{2}}[f(x+h)-2 f(x)+f(x-h)]=f^{\prime \prime}(x)+\frac{h}{6}\left[f^{\prime \prime \prime}\left(\xi_{1}\right)-f^{\prime \prime \prime}\left(\xi_{2}\right)\right]
$$

The error in the approximation formula for $f^{\prime \prime}$ is thus $O(h)$.

