1. Why do the following functions not posses Taylor series expansion at $x=0$?

- $f(x)=\sqrt{x}$
- $f(x)=|x|$
- $f(x)=\arcsin (x-1)$
- $f(x)=\cot x$
- $f(x)=\log x$
- $f(x)=x^{\pi}$

2. A function f is defined by the series

$$
f(x)=\sum_{k=1}^{\infty}(-1)^{k}\left(\frac{x^{k}}{k^{4}}\right)
$$

Determine the minimum number of terms needed to compute $f(1)$ with error less than 10^{-1}.
3. Use Horner's algorithm to evaluate $p(3)$, where p is the polynomial

$$
p(x)=x^{4}-4 x^{3}+7 x^{2}-5 x-2 .
$$

4. A real number x is represented approximately by 0.6032 , and we are told that the relative error is at most 0.1%. What is x ?
5. What is the relative error involved in rounding 4.9997 to 5.000 ?
6. Determine the first two nonzero terms of the series expansion about zero for the following

- $e^{\cos x}$
- $\sin (\cos x)$

7. Enumerate the set of numbers in the floating-point number system that have binary representation of the form

$$
\pm\left(0 . b_{1} b_{2}\right) \times 2^{k}, \text { where } k \in\{-1,1\} .
$$

8. In the case of machine underflow, what is the relative error involved in replacing a number x by zero?
9. How can values of the function $f(x)=\sqrt{x+4}-2$ be computed accurately when x is small?
10. What difficulty could the following assignment cause?

$$
y \leftarrow 1-\sin x
$$

Circumvent it without resorting to a Taylor series if possible.

