Name : \qquad

TO RECEIVE FULL CREDIT YOU MUST SHOW ALL YOUR WORK.

1. Sketch a graph of a function $f(x)$ that has the following features

- $f(x)$ is left continuous at $x=3$
- $f(x)$ is not right continuous at $x=3$
- $f(x)$ has an infinite limit at $x=5$
- $\lim _{x \rightarrow 8} f(x)$ exists
- $f(x)$ is not continuous at $x=8$

Figure 1: Graph of $f(x)$
2. Show that $\cos x=x$ has a solution in the interval $[0,1]$.
3. Find the maximum or minimum of $y=x^{2}+6 x+2$.
4. Find the domain of the rational function $f(x)=\frac{x-5}{x^{3}-3 x^{2}+4}$.
5. Evaluate the limit algebraically or state so if it does not exist.

- $\lim _{x \rightarrow 2} \frac{x^{3}-4 x}{x-2}$
- $\lim _{\theta \rightarrow 0} \frac{\sin (-3 \theta)}{\sin (4 \theta)}$
- $\lim _{\theta \rightarrow 0} \frac{1-\cos (4 \theta)}{\sin (3 \theta)}$
- $\lim _{x \rightarrow 10} \frac{\sqrt{x-6}-2}{x-10}$
- $\lim _{t \rightarrow 0} \frac{\sin \left(\frac{1}{2} t\right)}{3 t}$

6. Evaluate $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)$
7. Let $f(x)=\left\{\begin{array}{ll}x^{2}+3 & \text { for } x<1 \\ 10-x & \text { for } 1 \leq x \leq 2 . \text { Determine whether } f(x) \text { is continuous at } x=2 . \\ 6 x-x^{2} & \text { for } x>2\end{array}\right.$.
8. Use the limit definition to prove that $\lim _{x \rightarrow 2} x^{2}=4$
