CALCULUS AND ANALYTIC GEOMETRY I - MAT 250

FALL 2008-Review 3

No. I. State whether each statement is True or False as stated. Provide a clear reason for your answer.
i) $\tan (\arctan x)=x$.
ii) The derivative of the inverse of a differentiable function is the inverse of the derivative of the function.
iii) If x and y are differentiable functions of t and $y=x^{2}$, then $y^{\prime \prime}=2\left[\left(x^{\prime}\right)^{2}+x x^{\prime \prime}\right]$.
iv) $\frac{d}{d x} b^{x}=(\ln b) b^{x} \quad$ for $b<0$.
v) Given that $\sinh x=\frac{e^{x}-e^{-x}}{2}$, we can conclude that $\sinh x$ is never zero.

No. II. Calculate the derivative of y with respect to x.

- $\tan \left(x^{2} y\right)=x+y$
- $x^{\frac{1}{2}}+y^{-\frac{1}{2}}=2 x y$

No. III. Find $g^{\prime}(8)$, where $g(8)$ is the inverse of a differentiable function $f(x)$ such that $f(-1)=8$ and $f^{\prime}(-1)=12$.

No. IV. Use logarithmic differentiation to compute the derivative of $y=\frac{x \cos x}{(x+1) \sin x}$

No. V. Find the derivative:

- $f(x)=\ln \left(x+e^{x}\right)$
- $G(s)=\tan ^{-1}(\sqrt{s})$
- $f(x)=\ln \left(\csc ^{-1} x\right)$
- $y=e^{\sec ^{-1} x}$
- $g(t)=\sinh \left(t^{2}\right)$
- $h(y)=y \tanh (4 y)$
- $g(t)=\sqrt{t^{2}-1} \sinh ^{-1} t$
- $g(x)=\tanh ^{-1}\left(e^{x}\right)$

No. VI.

- A bead slides down the curve $x y=10$. Find the bead's horizontal velocity if its height at time t seconds is $y=80-16 t^{2} \mathrm{~cm}$.
- A $6-f t$ man walks away from a $15-f t$ lamppost at a speed of $3 f t / s$. Find the rate at which his shadow is increasing in length.

