Additional Topics in Trigonometry
 8.1 Oblique Triangles and the Law of Sines

December 3, 2009

Oblique Triangles and the Law of Sines

Oblique Triangle:

The Law of Sines

For a triangle with sides a, b, and c and opposite angles α, β and γ, the following is true:

$$
\frac{\sin \alpha}{a}=\frac{\sin \beta}{b}=\frac{\sin \gamma}{c}
$$

In order to solve an oblique triangle, we need to know the length of one side and one of the following three

- two angles
- one angle and another side
- the other two sides

Two Angles and One Side

Example

Solve the triangle $\beta=75^{\circ}, \gamma=60^{\circ}, b=25 \mathrm{in}$.

Example

Solve the triangle $\gamma=100^{\circ}, \beta=40^{\circ}, a=16 \mathrm{ft}$.

Two Sides and One Angle

This case is ambiguous, because the given information by itself can represent one triangle, two triangles or no triangle at all.

- If the angle given is acute then the possibilities are
- no triangle
- one triangle
- two triangles
- If the angle given is obtuse then the possibilities are
- no triangle
- one triangle

Example

Solve the triangle $b=30, c=20, \beta=70^{\circ}$.

Example

Solve the triangle $a=13, b=26, \alpha=120^{\circ}$.

