
Additional Topics in Trigonometry

8.1 Oblique Triangles and the Law of Sines

December 3, 2009

Oblique Triangles and the Law of Sines

Oblique Triangle:

The Law of Sines

For a triangle with sides a, b, and c and opposite angles $\alpha,\,\beta$ and $\gamma,$ the following is true:

$$rac{\sin lpha}{a} = rac{\sin eta}{b} = rac{\sin \gamma}{c}$$

In order to solve an oblique triangle, we need to know the length of one side and one of the following three $% \left({{{\left[{{{\rm{c}}} \right]}_{{\rm{c}}}}_{{\rm{c}}}} \right)$

- two angles
- one angle and another side
- the other two sides

Two Angles and One Side

Example

Solve the triangle $\beta = 75^{\circ}$, $\gamma = 60^{\circ}$, b = 25 in.

Example

Solve the triangle $\gamma = 100^{\circ}$, $\beta = 40^{\circ}$, a = 16 ft.

Two Sides and One Angle

This case is ambiguous, because the given information by itself can represent one triangle, two triangles or no triangle at all.

- If the angle given is acute then the possibilities are
 - no triangle
 - one triangle
 - two triangles
- If the angle given is obtuse then the possibilities are
 - no triangle
 - one triangle

Example

Solve the triangle b = 30, c = 20, $\beta = 70^{\circ}$.

Example

Solve the triangle a = 13, b = 26, $\alpha = 120^{\circ}$.