Trigonometric Functions

6.9 Graphs of Other Trigonometric Functions

November 5, 2010

The tangent function is a quotient that relies on sine and cosine. We analyze some properties of tangent by examining sine and cosine functions.

x	sin x	cos x	$\tan \mathbf{x} = \frac{\sin \mathbf{x}}{\cos \mathbf{x}}$	(\mathbf{x}, \mathbf{y}) or ASYMPTOTE
0	0	1	0	(0, 0)
$\frac{\pi}{2}$	1	0	undefined	vertical asymptote: $x = \frac{\pi}{2}$
π	0	-1	0	(π, 0)
$\frac{3\pi}{2}$	-1	0	undefined	vertical asymptote: $x = \frac{3\pi}{2}$
2π	0	1	0	$(2\pi, 0)$

Graph of $y = \tan x$

- 1. The *x*-intercepts occur at multiples of π . $x = n\pi$
- 2. Vertical asymptotes occur at odd integer multiples of $\frac{\pi}{2}$.

$$x=\frac{(2n+1)\pi}{2}$$

- 3. The domain is the set of all real numbers except odd integer multiples of $\frac{\pi}{2}$. $x \neq \frac{(2n+1)\pi}{2}$
- 4. The range is the set of all real numbers. $(-\infty,\infty)$
- 5. $y = \tan x$ has period π . $[\tan(-x) = -\tan x \text{ (odd)}]$
- 6. $y = \tan x$ is an odd function (symmetric about the origin).
- 7. The graph has no defined amplitude, since the function is unbounded.

Plot of $y = \tan x$

