Trigonometric Functions

6.9 Graphs of Other Trigonometric Functions

November 5, 2010

The tangent function is a quotient that relies on sine and cosine. We analyze some properties of tangent by examining sine and cosine functions.

\mathbf{x}	$\sin \mathbf{x}$	$\cos \mathbf{x}$	$\tan \mathbf{x}=\frac{\sin \mathbf{x}}{\cos \mathbf{x}}$	(\mathbf{x}, \mathbf{y}) or ASYMPTOTE
0	0	1	0	$(0,0)$
$\frac{\pi}{2}$	1	0	undefined	vertical asymptote: $x=\frac{\pi}{2}$
π	0	-1	0	$(\pi, 0)$
$\frac{3 \pi}{2}$	-1	0	undefined	vertical asymptote: $x=\frac{3 \pi}{2}$
2π	0	1	0	$(2 \pi, 0)$

Graph of $y=\tan x$

1. The x-intercepts occur at multiples of $\pi . \quad x=n \pi$
2. Vertical asymptotes occur at odd integer multiples of $\frac{\pi}{2}$.

$$
x=\frac{(2 n+1) \pi}{2}
$$

3. The domain is the set of all real numbers except odd integer multiples

$$
\text { of } \frac{\pi}{2} . \quad x \neq \frac{(2 n+1) \pi}{2}
$$

4. The range is the set of all real numbers. $(-\infty, \infty)$
5. $y=\tan x$ has period $\pi . \quad[\tan (-x)=-\tan x$ (odd)]
6. $y=\tan x$ is an odd function (symmetric about the origin).
7. The graph has no defined amplitude, since the function is unbounded.

Plot of $y=\tan x$

