Trigonometric Functions

6.6 Radian Measure and Applications

November 1, 2010

A central angle is an angle that has its vertex at the center of a circle.

Definition: Radian Measure

If a central angle θ in a circle wih radius r intercepts an arc on the circle of length s, then the measure of θ , in **radians** is given by

$$\theta(\text{in radian}) = \frac{s}{r}.$$

s (arc length) and r (radius) must be expressed in the same units.

Example

What is the measure (in radians) of a central angle θ that intercepts an arc of length 4 inches on a circle with radius 22 inches?

Example

What is the measure (in radians) of a central angle θ that intercepts an arc of length 20 mm on a circle with radius 100 cm?

Converting Degrees to Radians

To convert degrees to radians, multiply the degree measure by $\frac{\pi}{180^{\circ}}$.

$$\theta_r = \theta_d \frac{\pi}{180^\circ}$$

Converting Radians to Degrees

To convert radians to degrees, multiply the radian measure by $\frac{180^{\circ}}{\pi}$.

$$\theta_d = \theta_r \frac{180^\circ}{\pi}$$

Example

(a) Convert 60° to radians.(b) Convert 340° to radians

Example

(a) Convert
$$\frac{11\pi}{9}$$
 radians to degrees
(b) Convert $\frac{4\pi}{3}$ radians to degrees

Definition: Arc Length

If a central angle θ in a circle with radius r intercepts an arc on the circle of length s, then the **arc length** s is given by

$$\begin{split} s &= r\theta_r \qquad \theta_r \text{ is in radians} \\ s &= r\theta_d \left(\frac{\pi}{180^\circ}\right) \qquad \theta_d \text{ is in degrees} \end{split}$$

Example

In a circle with radius 6 yd, an arc in intercepted by a central angle with measure $\frac{\pi}{8}$. Find the arc length.

Definition: Area of a Circular Sector

The **area of a sector of a circle** with radius r and central angle θ is given by

$$\begin{aligned} A &= \frac{1}{2}r^2\theta_r \qquad \theta_r \text{ is in radians} \\ A &= \frac{1}{2}r^2\theta_d \left(\frac{\pi}{180^\circ}\right) \qquad \theta_d \text{ is in degrees} \end{aligned}$$

Example

Find the area of the circular sector given by a radius of 3 inches and central angle $\frac{\pi}{5}$. Round your answers to three significant digits.

Definition: Linear Speed

If a point P moves along the circumference of a circle at a constant speed, then the **linear speed** v is given by

$$v = \frac{s}{t}$$

where s is the arc length and t is the time.

Example

Find the linear speed of a point that moves with constant speed in a circular motion if the point travels along the circle of arc length 12 ft in 3 min.

Example

Find the distance traveled (arc length) of a point that moves with constant speed 6.2km/hr along a circle in 4.5 hours.

Definition: Angular Speed

If a point P moves along the circumference of a circle at a constant speed, then the central angle θ that is formed with the terminal side passing through the point P also changes over some time t at a constant speed. The **angular speed** ω (omega) is given by

$$\omega = \frac{\theta}{t}$$
 where θ is given in radian

where s is the arc length and t is the time.

Example

Find the angular speed associated with rotating a central angle $\frac{3\pi}{4}$ in $\frac{1}{6}$ sec.

Relating Linear and Angular Speeds

If a point *P* moves at a constant speed along the circumference of a circle with radius *r*, then the **linear speed** *v* and the **angular speed** ω are related by

 $v = r\omega$.

 $\boldsymbol{\theta}$ is given in radians.