Trigonometric Functions

6.6 Radian Measure and Applications

November 1, 2010

A central angle is an angle that has its vertex at the center of a circle.

Definition: Radian Measure

If a central angle θ in a circle wih radius r intercepts an arc on the circle of length s, then the measure of θ, in radians is given by

$$
\theta(\text { in radian })=\frac{s}{r} .
$$

s (arc length) and r (radius) must be expressed in the same units.

Example

What is the measure (in radians) of a central angle θ that intercepts an arc of length 4 inches on a circle with radius 22 inches?

Example

What is the measure (in radians) of a central angle θ that intercepts an arc of length 20 mm on a circle with radius 100 cm ?

Converting Degrees to Radians

To convert degrees to radians, multiply the degree measure by $\frac{\pi}{180^{\circ}}$.

$$
\theta_{r}=\theta_{d} \frac{\pi}{180^{\circ}}
$$

Converting Radians to Degrees

To convert radians to degrees, multiply the radian measure by $\frac{180^{\circ}}{\pi}$.

$$
\theta_{d}=\theta_{r} \frac{180^{\circ}}{\pi}
$$

Example

(a) Convert 60° to radians.
(b) Convert 340° to radians

Example

(a) Convert $\frac{11 \pi}{9}$ radians to degrees
(b) Convert $\frac{4 \pi}{3}$ radians to degrees

Definition: Arc Length

If a central angle θ in a circle with radius r intercepts an arc on the circle of length s, then the arc length s is given by

$$
\begin{gathered}
s=r \theta_{r} \quad \theta_{r} \text { is in radians } \\
s=r \theta_{d}\left(\frac{\pi}{180^{\circ}}\right) \quad \theta_{d} \text { is in degrees }
\end{gathered}
$$

Example

In a circle with radius 6 yd , an arc in intercepted by a central angle with measure $\frac{\pi}{8}$. Find the arc length.

Definition: Area of a Circular Sector

The area of a sector of a circle with radius r and central angle θ is given by

$$
\begin{gathered}
A=\frac{1}{2} r^{2} \theta_{r} \quad \theta_{r} \text { is in radians } \\
A=\frac{1}{2} r^{2} \theta_{d}\left(\frac{\pi}{180^{\circ}}\right) \quad \theta_{d} \text { is in degrees }
\end{gathered}
$$

Example

Find the area of the circular sector given by a radius of 3 inches and central angle $\frac{\pi}{5}$. Round your answers to three significant digits.

Definition: Linear Speed

If a point P moves along the circumference of a circle at a constant speed, then the linear speed v is given by

$$
v=\frac{s}{t}
$$

where s is the arc length and t is the time.

Example

Find the linear speed of a point that moves with constant speed in a circular motion if the point travels along the circle of arc length 12 ft in 3 min.

Example

Find the distance traveled (arc length) of a point that moves with constant speed $6.2 \mathrm{~km} / \mathrm{hr}$ along a circle in 4.5 hours.

Definition: Angular Speed

If a point P moves along the circumference of a circle at a constant speed, then the central angle θ that is formed with the terminal side passing through the point P also changes over some time t at a constant speed. The angular speed ω (omega) is given by

$$
\omega=\frac{\theta}{t} \quad \text { where } \theta \text { is given in radian }
$$

where s is the arc length and t is the time.

Example

Find the angular speed associated with rotating a central angle $\frac{3 \pi}{4}$ in $\frac{1}{6}$ sec .

Relating Linear and Angular Speeds

If a point P moves at a constant speed along the circumference of a circle with radius r, then the linear speed v and the angular speed ω are related by

$$
v=r \omega
$$

θ is given in radians.

