Trigonometric Functions

6.4 Definition 2 of Trigonometric Functions: Cartesian Plane

October 28, 2010

Definition: Standard Position

An angle is said to be in standard position if its initial side is along the positive x-axis and its vertex is at the origin.

Quadrants

Definition: Coterminal Angles

Two angles in standard position with the same terminal side are called coterminal angles.

To find measures of the smallest nonnegative coterminal angles

- if the given angle is positive, subtract 360° repeatedly until the result is a positive angle less than or equal to 360°.
- If the given angle is negative, add 360° repeatedly until the result is a positive angle less than or equal to 360°.

Example

Determine the angle of the smallest possible positive measure that is coterminal with 945° and -187°.
$\begin{array}{ll}\text { Since } 945^{\circ} \text { is positive, subtract } 360^{\circ} . & 945^{\circ}-360^{\circ}=585^{\circ} \\ \text { Subtract } 360^{\circ} \text { again. } & 585^{\circ}-360^{\circ}=225^{\circ}\end{array}$
The angle with measure 225° is the angle with the smallest positive measure that is coterminal with the angle with measure 945°.

Since -187° is negative, add $360^{\circ} . \quad-187^{\circ}+360^{\circ}=173^{\circ}$

Common Angles in Standard Position

Consider an acute angle θ in standard position and choose any point (x, y) on the terminal side of the angle as long as it is not the vertex (the origin).

Definition 2: Trigonometric Functions

Let (x, y) be a point other than the origin on the terminal side of an angle θ in standard position. Let r be the distance from the point (x, y) to the origin. Then the six trigonometric functions are defined as

$$
\begin{array}{lll}
\sin \theta=\frac{y}{r} & \cos \theta=\frac{x}{r} & \tan \theta=\frac{y}{x} \quad(x \neq 0) \\
\csc \theta=\frac{r}{y} \quad(y \neq 0) & \sec \theta=\frac{r}{x}(x \neq 0) & \cot \theta=\frac{x}{y} \quad(y \neq 0)
\end{array}
$$

where $r=\sqrt{x^{2}+y^{2}}$, or $x^{2}+y^{2}=r^{2}$. The distance r is positive: $r>0$.

Example

The terminal side of an angle θ in standard position passes through the point $(2,5)$. Calculate the values of the six trigonometric functions for angle θ.

Example

The terminal side of an angle θ in standard position passes through the point $(-4,-7)$. Calculate the values of the six trigonometric functions for angle θ.

