Exponential and Logarithmic Functions

5.3 Properties of Logarithms

October 18, 2010

Properties of Exponents

Let *a*, *b*, *m* and *n* be any real numbers and m > 0 and n > 0, then the following are true:

1.
$$b^m \cdot b^n = b^{m+n}$$

2. $b^{-m} = \frac{1}{b^m} = \left(\frac{1}{b}\right)^m$
3. $\frac{b^m}{b^n} = b^{m-n}$
4. $(b^m)^n = b^{mn}$
5. $(ab)^m = a^m \cdot b^m$
6. $b^0 = 1, \quad b \neq 0$
7. $b^1 = b$

Properties of Logarithms

If *b*, *M*, and *N* are positive real numbers, where $b \neq 1$ and *p* and *x* are real numbers, then the following are true:

1. $\log_b 1 = 0$ 2. $\log_b b = 1$ 3. $\log_b b^{\mathsf{x}} = \mathsf{x}$ 4. $b^{\log_b \mathsf{x}} = \mathsf{x}, \quad \mathsf{x} > 0$ 5. $\log_b MN = \log_b M + \log_b N$ Product Rule 6. $\log_b \left(\frac{M}{N}\right) = \log_b M - \log_b N$ Quotient Rule 7. $\log_b M^p = p \log_b M$ Power Rule

Examples

Use properties of logarithms to simplify the expressions:

(a).
$$\log_{10} 10$$
 (b). $\ln 1$ (c). $10^{\log(x+8)}$
(d). $e^{\ln(2x+5)}$ (e). $\log 10^{x^2}$ (f). $\ln e^{x+3}$

Example

Use the logarithmic properties to write the expression $\log_b(u^2\sqrt{v})$ as a sum of simpler logarithms.

Example

Write the expression
$$\ln\left(\frac{x^3}{y^2}\right)$$
 as a difference of logarithms.

Example

Write
$$\ln\left(\frac{x^2 - x - 6}{x^2 + 7x + 6}\right)$$
 as a sum or difference of logarithms.

Example

Write the expression

$$\frac{2}{3}\ln x - \frac{1}{2}\ln y$$

as a logarithm of a quotient.

Example

Write the expression

$$\frac{1}{2}\log_b x + \log_b(2x+1) - 2\log_b 4$$

as a single logarithm.

Change-of-Base Formula

For any logarithmic bases a and b and any positive number M, the change-of-base formula says that

$$\log_b M = \frac{\log_a M}{\log_a b}.$$

Example

Use the change-of-base formula to evaluate $\log_4 17$. Round to four decimal places.