Exponential and Logarithmic Functions

5.3 Properties of Logarithms

October 18, 2010

Properties of Exponents

Let a, b, m and n be any real numbers and $m>0$ and $n>0$, then the following are true:

1. $b^{m} \cdot b^{n}=b^{m+n}$
2. $b^{-m}=\frac{1}{b^{m}}=\left(\frac{1}{b}\right)^{m}$
3. $\frac{b^{m}}{b^{n}}=b^{m-n}$
4. $\left(b^{m}\right)^{n}=b^{m n}$
5. $(a b)^{m}=a^{m} \cdot b^{m}$
6. $b^{0}=1, \quad b \neq 0$
7. $b^{1}=b$

Properties of Logarithms

If b, M, and N are positive real numbers, where $b \neq 1$ and p and x are real numbers, then the following are true:

1. $\log _{b} 1=0$
2. $\log _{b} b=1$
3. $\log _{b} b^{x}=x$
4. $b^{\log _{b} x}=x, \quad x>0$
5. $\log _{b} M N=\log _{b} M+\log _{b} N \quad$ Product Rule
6. $\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N \quad$ Quotient Rule
7. $\log _{b} M^{p}=p \log _{b} M$

Power Rule

Examples

Use properties of logarithms to simplify the expressions:
(a). $\log _{10} 10$
(b). $\ln 1$
(c). $10^{\log (x+8)}$
(d). $e^{\ln (2 x+5)}$
(e). $\log 10^{x^{2}}$
(f). $\ln e^{x+3}$

Example

Use the logarithmic properties to write the expression $\log _{b}\left(u^{2} \sqrt{v}\right)$ as a sum of simpler logarithms.

Example

Write the expression $\ln \left(\frac{x^{3}}{y^{2}}\right)$ as a difference of logarithms.

Example

Write $\ln \left(\frac{x^{2}-x-6}{x^{2}+7 x+6}\right)$ as a sum or difference of logarithms.

Example

Write the expression

$$
\frac{2}{3} \ln x-\frac{1}{2} \ln y
$$

as a logarithm of a quotient.

Example

Write the expression

$$
\frac{1}{2} \log _{b} x+\log _{b}(2 x+1)-2 \log _{b} 4
$$

as a single logarithm.

Change-of-Base Formula

For any logarithmic bases a and b and any positive number M, the change-of-base formula says that

$$
\log _{b} M=\frac{\log _{a} M}{\log _{a} b} .
$$

Example

Use the change-of-base formula to evaluate $\log _{4} 17$. Round to four decimal places.

