Exponential and Logarithmic Functions

5.2 Logarithmic Functions and Their Graphs

October 14, 2010

Definition: Logarithmic Function

For $x>0, b>0$ and $b \neq 1$, the logarithmic function with base b is denoted

$$
f(x)=\log _{b} x
$$

where

$$
y=\log _{b} x \text { if and only if } x=b^{y}
$$

Examples

Write each equation in its equivalent exponential form.

$$
\begin{array}{lll}
\text { (a). } \log _{2} 8=3 & \text { (b). } \log _{9} 3=\frac{1}{2} & \text { (c). } \log _{5}\left(\frac{1}{25}\right)=-2
\end{array}
$$

Examples

Write each equation in its equivalent logarithmic form.
(a). $16=2^{4}$
(b). $9=\sqrt{81}$
(c). $\frac{1}{9}=3^{-2}$
(d). $x^{a}=z$

Examples

Find the exact value of
(a). $\log _{3} 81$
(b). $\log _{169} 13$
(c). $\log _{5}\left(\frac{1}{5}\right)$

- The logarithmic function of base 10 is called the common logarithmic function.
- If no explicit base is indicated, base 10 is implied.
- The logarithmic function of base e is called the natural logarithmic function.
- The natural logarithmic function $f(x)=\log _{e} x$ is often expressed as $f(x)=\ln x$.

Examples

Use a calculator to evaluate the common and natural logarithms. Round your answers to four decimal places.
(a). $\log 415$
(b). $\ln 415$
(c). $\log 1$
(d). $\ln 1$
(e). $\log (-2)$

The general logarithmic function $y=\log _{b} x$ is defined as the inverse of the exponential function $y=b^{x}$.

Comparison of Inverse Functions:
$f(x)=\log _{b} x$ and $f^{-1}(x)=b^{x}$

EXPONENTIAL FUNCTION

$y=b^{x}$	$y=\log _{b} x$
y-intercepts: $(0,1)$	x-intercepts: $(1,0)$
Domain $(-\infty, \infty)$	Domain $(0, \infty)$
Range $(0, \infty)$	Range $(-\infty, \infty)$
Horizontal asymptote: x-axis	Vertical asymptote: y-axis

Examples

Find the domain of each of the given logarithmic functions.

$$
\text { (a). } f(x)=\log _{b}(x-4) \quad \text { (b). } g(x)=\log _{b}(5-2 x)
$$

Examples

Find the domain of each of the given logarithmic functions.

$$
\text { (a). } \ln \left(x^{2}-9\right) \quad \text { (b). } \log (|x+1|)
$$

Examples

Graph the functions, and state the domain and range of each.

$$
\begin{array}{ll}
\text { (a). } y=\log _{2}(x-3) & \text { (b). } y=\log _{2}(x)-3
\end{array}
$$

Example

Graph the function, and state its domain and range.

$$
f(x)=-\log _{2}(x-3)
$$

