Exponential and Logarithmic Functions

5.2 Logarithmic Functions and Their Graphs

October 14, 2010

Definition: Logarithmic Function

For x > 0, b > 0 and $b \neq 1$, the **logarithmic function** with **base** b is denoted

$$f(x) = \log_b x$$

where

$$y = \log_{b} x$$
 if and only if $x = b^{y}$.

Examples

Write each equation in its equivalent exponential form.

(a).
$$\log_2 8 = 3$$
 (b). $\log_9 3 = \frac{1}{2}$ (c). $\log_5 \left(\frac{1}{25}\right) = -2$

Write each equation in its equivalent logarithmic form.

(a).
$$16 = 2^4$$
 (b). $9 = \sqrt{81}$ (c). $\frac{1}{9} = 3^{-2}$ (d). $x^a = z$

Examples

Find the exact value of

(a).
$$\log_3 81$$
 (b). $\log_{169} 13$ (c). $\log_5\left(\frac{1}{5}\right)$

- ► The logarithmic function of base 10 is called the **common logarithmic function**.
 - If no explicit base is indicated, base 10 is implied.
- ► The logarithmic function of base *e* is called the **natural logarithmic function**.
 - ► The natural logarithmic function $f(x) = \log_e x$ is often expressed as $f(x) = \ln x$.

Use a calculator to evaluate the common and natural logarithms. Round your answers to four decimal places.

(a). $\log 415$ (b). $\ln 415$ (c). $\log 1$ (d). $\ln 1$ (e). $\log(-2)$

The general logarithmic function $y = \log_b x$ is defined as the inverse of the exponential function $y = b^x$.

Comparison of Inverse Functions: $f(x) = \log_b x$ and $f^{-1}(x) = b^x$

EXPONENTIAL FUNCTION	LOGARITHMIC FUNCTION
$y = b^{\times}$	$y = \log_b x$
y-intercepts: (0,1)	x-intercepts: $(1,0)$
Domain $(-\infty,\infty)$	Domain $(0,\infty)$
Range $(0,\infty)$	Range $(-\infty,\infty)$
Horizontal asymptote: x-axis	Vertical asymptote: y-axis

Find the domain of each of the given logarithmic functions.

(a).
$$f(x) = \log_b(x-4)$$
 (b). $g(x) = \log_b(5-2x)$

Examples

Find the domain of each of the given logarithmic functions.

(a).
$$\ln(x^2 - 9)$$
 (b). $\log(|x + 1|)$

Graph the functions, and state the domain and range of each.

(a).
$$y = \log_2(x - 3)$$
 (b). $y = \log_2(x) - 3$

Example

Graph the function, and state its domain and range.

$$f(x) = -\log_2(x-3)$$