Polynomial and Rational Functions

4.6 Rational Functions

October 7, 2010

Definition: Rational Function

A function $f(x)$ is a rational function if

$$
f(x)=\frac{n(x)}{d(x)}, \quad d(x) \neq 0
$$

where the numerator, $n(x)$, and the denominator, $d(x)$, are polynomial functions. The domain of $f(x)$ is the set of all real numbers x such that $d(x) \neq 0$.

Examples

Find the domain of the rational functions, expressing the domain in interval notation.

$$
\begin{array}{ll}
\text { (a). } f(x)=\frac{x+1}{x^{2}-x-6} & \text { (b). } g(x)=\frac{3 x}{x^{2}+9}
\end{array}
$$

Definition: Vertical Asymptotes

The line $x=a$ is a vertical asymptote for the graph of a function if $f(x)$ either increases or decreases without bound as x approaches a from either the left or the right.

Locating Vertical Asymptotes

Let $f(x)=\frac{n(x)}{d(x)}$ be a rational function in lowest terms (i.e. assume $n(x)$ and $d(x)$ are polynomials with no common factors); then the graph of f has a vertical asymptote at any real zero of the denominator $d(x)$.

Examples

Locate any vertical asymptotes of the rational functions

- $f(x)=\frac{5 x+2}{6 x^{2}-x-2}$
- $f(x)=\frac{x+2}{x^{3}-3 x^{2}-10 x}$

Definition: Horizontal Asymptote

The line $y=b$ is a horizontal asymptote of the graph of a function if $f(x)$ approaches b as x increases or decreases without bound.

Locating Horizontal Asymptotes

Let f be a rational function given by

$$
f(x)=\frac{n(x)}{d(x)}=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\ldots+b_{1} x+b_{0}}
$$

where $n(x)$ and $d(x)$ are polynomials.

- When $n<m$, the x-axis $(y=0)$ is the horizontal asymptote.
- When $n=m$, the line $y=\frac{a_{n}}{b_{n}}$ (ratio of leading coefficients) is the horizontal asymptote.
- When $n>m$, there is no horizontal asymptote.

Examples

Determine whether a horizontal asymptote exists for the graph of each of the given rational functions. If it does, locate the horizontal asymptote.

- $f(x)=\frac{8 x+3}{4 x^{2}+1}$
- $g(x)=\frac{8 x^{2}+3}{4 x^{2}+1}$
- $h(x)=\frac{8 x^{3}+3}{4 x^{2}+1}$

Slant Asymptote

Let f be a rational function given by $f(x)=\frac{n(x)}{d(x)}$, where $n(x)$ and $d(x)$ are polynomials and the degree of $n(x)$ is one more than the degree of $d(x)$. On dividing $n(x)$ by $d(x)$, the rational function can be expressed as

$$
f(x)=m x+b+\frac{r(x)}{d(x)}
$$

where the degree of the remainder $r(x)$ is less than the degree of $d(x)$ and the line $y=m x+b$ is a slant asymptote for the graph of f.

Example

Determine the slant asymptote of the rational function

$$
f(x)=\frac{x^{2}+9 x+20}{x-3}
$$

