Polynomial and Rational Functions

4.2 Polynomial Functions of Higher Degree

October 5, 2010

Definition: Polynomial Function

Let n be a nonnegative integer, and let $a_{n}, a_{n-1}, \ldots, a_{2}, a_{1}, a_{0}$ be real numbers with $a_{n} \neq 0$. The function

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}
$$

is called a polynomial function of x with degree n. The coefficient a_{n} is called the leading coefficient, and a_{0} is the constant.

Example 1

For each of the given functions, determine whether the function is a polynomial function. If it is a polynomial function, state the degree of the polynomial.
a. $f(x)=3-2 x^{5}$
b. $F(x)=\sqrt{x}+1$
c. $g(x)=2$
d. $h(x)=3 x^{2}-2 x+5$
e. $H(x)=4 x^{5}(2 x-3)^{2}$
f. $G(x)=2 x^{4}-5 x^{3}-4 x^{-2}$

Graphs of Polynomial Functions

Polynomial $f(x)=c$	Degree	Special Name Constant function	Graph
Horizontal line			
$f(x)=m x+b$	1	Linear function	Line
			• Slope $=m$
			• y-intercept: $(0, b)$
$f(x)=a x^{2}+b x+c$	2	Quadratic function	Parabola - Opens
			• up if $a>0$
		down if $a<0$	

Graphs of all polynomial functions are both continuous and smooth.

- A continuous graph is one you can draw completely without picking up your pencil (the graph has no jumps or holes).
- A smooth graph has no sharp corners.

Definition: Power Function

Let n be a positive integer and the coefficient $a \neq 0$ be a real number. The function

$$
f(x)=a x^{n}
$$

is called a power function of degree n.

Power functions with even powers look similar to the square function.
Power functions with odd powers (other than $n=1$) look similar to the cube function.

Real Zeros of Polynomial Functions

If $f(x)$ is a polynomial function and a is a real number, then the following statements are equivalent.

1. $x=a$ is a solution, or root, of the equation $f(x)=0$.
2. $(a, 0)$ is an x-intercept of the graph of $f(x)$.
3. $x=a$ is a zero of the function $f(x)$.
4. $(x-a)$ is a factor of $f(x)$.

Consider the polynomial function $f(x)=x^{2}-1$.

Example 3

Find the real zeros of the polynomial function $f(x)=x^{3}+x^{2}-2 x$.

Definition: Multiplicity of a Zero

If $(x-a)^{n}$ is a factor of a polynomial f, then a is called a zero of multiplicity \mathbf{n} of f.

Example 4

Find the zeros, and state their multiplicities, of the polynomial function $g(x)=(x-1)^{2}\left(x+\frac{3}{5}\right)^{7}(x+5)$.

Example 5

Find a polynomial of degree 7 whose zeros are
-2 (multiplicity 2$) \quad 0$ (multiplicity 4$) \quad 1$ (multiplicity 1).

Multiplicity of a zero and relation to the graph of a polynomial
If a is zero of $f(x)$, then:

Multiplicity of a	$f(x)$ on either side of $x=a$	Graph of Function at the Intercept
Even	Does not change sign	Touches the x-axis (turns around) at point $(a, 0)$
Odd	Changes sign	Crosses the x-axis at point $(a, 0)$

End Behavior

As x gets large in the positive $(x \rightarrow \infty)$ and negative $(x \rightarrow-\infty)$ directions, the graph of the polynomial

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}
$$

has the same behavior as the power function

$$
y=a_{n} x^{n} .
$$

To graph a polynomial function of degree 3 or greater

1. Determine the y-intercept.
2. Find the zeros of the polynomial (note the multiplicities).
3. Determine the end behavior.
4. Sketch the intercepts and end behavior.
5. Find additional points.
6. Sketch the graph.

Example 7

Sketch the graph of the polynomial function $f(x)=2 x^{4}-8 x^{2}$.

