Polynomial and Rational Functions

4.2 Polynomial Functions of Higher Degree

October 5, 2010

Definition: Polynomial Function

Let *n* be a nonnegative integer, and let $a_n, a_{n-1}, ..., a_2, a_1, a_0$ be real numbers with $a_n \neq 0$. The function

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

is called a **polynomial function of** x with degree n. The coefficient a_n is called the **leading coefficient**, and a_0 is the constant.

Example 1

For each of the given functions, determine whether the function is a polynomial function. If it is a polynomial function, state the degree of the polynomial.

a.
$$f(x) = 3 - 2x^5$$

b. $F(x) = \sqrt{x} + 1$
c. $g(x) = 2$
d. $h(x) = 3x^2 - 2x + 5$
e. $H(x) = 4x^5(2x - 3)^2$
f. $G(x) = 2x^4 - 5x^3 - 4x^{-2}$

Graphs of Polynomial Functions

Polynomial	Degree	Special Name	Graph
f(x) = c	0	Constant function	Horizontal line
f(x) = mx + b	1	Linear function	Line
			• Slope = m
			• y-intercept: $(0, b)$
$f(x) = \frac{ax^2}{bx} + bx + c$	2	Quadratic function	Parabola – Opens
			 up if a > 0
			• down if <i>a</i> < 0

Graphs of all polynomial functions are both *continuous* and *smooth*.

- A continuous graph is one you can draw completely without picking up your pencil (the graph has no jumps or holes).
- A **smooth** graph has no sharp corners.

Definition: Power Function

Let *n* be a positive integer and the coefficient $a \neq 0$ be a real number. The function

$$f(x) = ax^n$$

is called a **power function of degree** *n*.

Power functions with even powers look similar to the square function.

Power functions with *odd* powers (other than n = 1) look similar to the cube function.

Real Zeros of Polynomial Functions

If f(x) is a polynomial function and *a* is a real number, then the following statements are equivalent.

- 1. x = a is a **solution**, or **root**, of the equation f(x) = 0.
- 2. (a, 0) is an x-intercept of the graph of f(x).
- 3. x = a is a **zero** of the function f(x).
- 4. (x a) is a factor of f(x).

Consider the polynomial function $f(x) = x^2 - 1$.

Example 3

Find the real zeros of the polynomial function $f(x) = x^3 + x^2 - 2x$.

Definition: Multiplicity of a Zero

If $(x - a)^n$ is a factor of a polynomial f, then a is called a **zero of multiplicity n** of f.

Example 4

Find the zeros, and state their multiplicities, of the polynomial function $g(x) = (x - 1)^2 (x + \frac{3}{5})^7 (x + 5)$.

Example 5

Find a polynomial of degree 7 whose zeros are

-2 (multiplicity 2) 0 (multiplicity 4) 1 (multiplicity 1).

Multiplicity of a zero and relation to the graph of a polynomial

If *a* is zero of f(x), then:

Multiplicity	f(x) on either	Graph of Function
of a	side of $x = a$	at the Intercept
Even	Does not change sign	Touches the <i>x</i> -axis
		(turns around) at
		point (a , 0)
Odd	Changes sign	Crosses the <i>x</i> -axis
		at point (a,0)

End Behavior

As x gets large in the positive $(x \to \infty)$ and negative $(x \to -\infty)$ directions, the graph of the polynomial

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

has the same behavior as the power function

$$y = a_n x^n$$
.

To graph a polynomial function of degree 3 or greater

- 1. Determine the *y*-intercept.
- 2. Find the zeros of the polynomial (note the multiplicities).
- 3. Determine the end behavior.
- 4. Sketch the intercepts and end behavior.
- 5. Find additional points.
- 6. Sketch the graph.

Example 7

Sketch the graph of the polynomial function $f(x) = 2x^4 - 8x^2$.