Polynomial and Rational Functions

4.1 Quadratic Functions

October 4, 2010

Definition: Polynomial Function

Let n be a nonnegative integer, and let $a_{n}, a_{n-1}, \ldots, a_{2}, a_{1}, a_{0}$ be real numbers with $a_{n} \neq 0$. The function

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}
$$

is called a polynomial function of x with degree n. The coefficient a_{n} is called the leading coefficient, and a_{0} is the constant.

Examples

$$
\begin{aligned}
& \text { Polynomial } \\
& f(x)=10 \\
& f(x)=-2 x+1 \\
& f(x)=7 x^{2}-5 x+19 \\
& f(x)=4 x^{3}+2 x-7
\end{aligned}
$$

Degree
0
1
2
3

Special Name
Constant function
Linear function
Quadratic function
Cubic function

Graph of a Quadratic Function

Definition: Quadratic Function

Let a, b, and c be real numbers with $a \neq 0$. The function

$$
f(x)=a x^{2}+b x+c
$$

is called a quadratic function.

The graph of any quadratic function is a parabola.

- If the leading coefficient a is positive, then the parabola opens up.
- If the leading coefficient a is negative, then the parabola opens down.

The vertex (or turning point)

- is the minimum point, or low point, on the graph if the parabola opens up.
- is the maximum point or high point, on the graph if the parabola opens down.

The vertical line that intersects the parabola at the vertex is called the axis of symmetry.

- The axis of symmetry is the line $x=h$.
- The vertex is located at the point (h, k).

Graphing Quadratic Functions in Standard Form

Quadratic Function: Standard Form

The quadratic function

$$
f(x)=a(x-h)^{2}+k
$$

is in standard form.

- The graph of f is a parabola whose vertex is the point (h, k).
- The parabola is symmetric with respect to the line $x=h$.
- If $a>0$, the parabola opens up.
- If $a<0$, the parabola opens down.

Graphing Quadratic Functions

To graph $f(x)=a(x-h)^{2}+k$.

- Step 1: Determine whether the parabola opens up or down.
- $a>0$ up
- $a<0$ down
- Step 2: Determine the vertex (h, k).
- Step 3: Find the y-intercept.
- Step 4: Find any x-intercepts.
- Step 5: Plot the vertex and intercepts and connect them with a smooth curve.

Example 1

Graph the quadratic function $f(x)=(x-3)^{2}-1$.

Example 2

Graph the quadratic function $f(x)=-2(x-1)^{2}-3$.

Example 3

Graph the quadratic function $f(x)=x^{2}-6 x+4$.

Graphing Quadratic Functions in General Form

Vertex of a parabola

The graph of a quadratic function $f(x)=a x^{2}+b x+c$ is a parabola with the vertex located at the point

$$
\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)
$$

Graphing a Quadratic Function in General Form

- Step 1: Find the vertex
- Step 2: Determine whether the parabola opens up or down.
- If $a>0$, the parabola opens up.
- If $a<0$, the parabola opens down.
- Step 3: Find additional points near the vertex.
- Step 4: Sketch the graph with a parabolic curve.

Example 5

Sketch the graph of $f(x)=-2 x^{2}+4 x+5$.

Finding the Equation of a Parabola

Example 6

Find the equation of a parabola whose graph has a vertex at $(3,4)$ and which passes through the point $(2,3)$. Express the quadratic function in both standard and general forms.

Example 7

A company that produces motorcycles has a daily production cost of

$$
C(x)=2000-15 x+0.05 x^{2}
$$

where C is the cost in dollars to manufacture a motorcycle and x is the number of motorcycles produced. How many motorcycles can be produced each day in order to minimize the cost of each motorcycle? What is the corresponding minimum cost?

