Functions and their Graphs

3.5 One-to-One Functions and Inverse Functions

September 28, 2010

Definition: One-to-One Function

A function f(x) is **one-to-one** if no two elements in the domain correspond to the same element in the range; that is,

if $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$.

Example 1

For each of the three relations, determine whether the relation is a function. If it is a function, determine whether it is a one-to-one function.

•
$$f = \{(0,0), (1,1), (1,-1)\}$$

•
$$g = \{(-1,1), (0,0), (1,1)\}$$

• $h = \{(-1, -1), (0, 0), (1, 1)\}$

Definition: Horizontal Line Test

If every horizontal line intersects the graph of a function in at most one point, then the function is classified as a one-to-one function.

Example 2

For each of the three relations, determine whether the relation is a function. If it is a function, determine whether it is a one-to-one function. Assume that x is the independent variable and y is the dependent variable.

Example 3

Determine algebraically whether the functions are one-to-one.

Definition: Inverse Function

If f and g denote two one-to-one functions such that

$$f(g(x)) = x$$
 for every x in the domain of g

and

g(f(x)) = x for every x in the domain of f,

then g is the **inverse** of the function f. The function g is denoted by f^{-1} (read "f-inverse").

Domain and Range

Domain of f = range of f^{-1} and range of f = domain of f^{-1}

$$f^{-1}(f(x)) = x$$
 and $f(f^{-1}(x)) = x$.

Example 4

Verify that $f^{-1}(x) = \frac{1}{2}x - 2$ is the inverse of f(x) = 2x + 4.

Example 5

Verify that $f^{-1}(x) = x^2$, for $x \ge 0$, is the inverse of $f(x) = \sqrt{x}$.

Finding the Inverse of a Function

- Step 1:
 Let y = f(x).
 Step 2:
 Interchange x and y.
- Step 3:
 - Solve for *y* in terms of *x*.
- Step 4:

• Let
$$y = f^{-1}(x)$$
.

Note:

- Verify first that a function is one-to-one prior to finding an inverse.
- State the domain restrictions on the inverse function.
- ► To verify that you have found the inverse, show that f(f⁻¹(x)) = x for all x in the domain of f⁻¹ and f⁻¹(f(x)) = x for all x in the domain of f.

Example 7

Find the inverse of the function $f(x) = \sqrt{x+2}$ and state the domain and range of both f and f^{-1} .

Example 8

Find the inverse of the function f(x) = |x| if it exists.

Example 9

The function $f(x) = \frac{2}{x+3}$, $x \neq -3$, is a one-to-one function. Find its inverse.