Functions and their Graphs

3.5 One-to-One Functions and Inverse Functions

September 28, 2010

Definition: One-to-One Function

A function $f(x)$ is one-to-one if no two elements in the domain correspond to the same element in the range; that is,

$$
\text { if } x_{1} \neq x_{2} \text {, then } f\left(x_{1}\right) \neq f\left(x_{2}\right) \text {. }
$$

Example 1

For each of the three relations, determine whether the relation is a function. If it is a function, determine whether it is a one-to-one function.

- $f=\{(0,0),(1,1),(1,-1)\}$
- $g=\{(-1,1),(0,0),(1,1)\}$
- $h=\{(-1,-1),(0,0),(1,1)\}$

Definition: Horizontal Line Test

If every horizontal line intersects the graph of a function in at most one point, then the function is classified as a one-to-one function.

Example 2

For each of the three relations, determine whether the relation is a function. If it is a function, determine whether it is a one-to-one function. Assume that x is the independent variable and y is the dependent variable.

- $x=y^{2}$
- $y=x^{2}$
- $y=x^{3}$

Example 3

Determine algebraically whether the functions are one-to-one.

- $f(x)=5 x^{3}-2$
- $f(x)=|x+1|$

Definition: Inverse Function

If f and g denote two one-to-one functions such that

$$
f(g(x))=x \quad \text { for every } x \text { in the domain of } g
$$

and

$$
g(f(x))=x \quad \text { for every } x \text { in the domain of } f
$$

then g is the inverse of the function f. The function g is denoted by f^{-1} (read " f-inverse").

Domain and Range

Domain of $f=$ range of f^{-1} and range of $f=$ domain of f^{-1}

$$
f^{-1}(f(x))=x \quad \text { and } \quad f\left(f^{-1}(x)\right)=x
$$

Example 4

Verify that $f^{-1}(x)=\frac{1}{2} x-2$ is the inverse of $f(x)=2 x+4$.

Example 5

Verify that $f^{-1}(x)=x^{2}$, for $x \geq 0$, is the inverse of $f(x)=\sqrt{x}$.

Finding the Inverse of a Function

- Step 1:
- Let $y=f(x)$.
- Step 2:
- Interchange x and y.
- Step 3:
- Solve for y in terms of x.
- Step 4:
- Let $y=f^{-1}(x)$.

Note:

- Verify first that a function is one-to-one prior to finding an inverse.
- State the domain restrictions on the inverse function.
- To verify that you have found the inverse, show that $f\left(f^{-1}(x)\right)=x$ for all x in the domain of f^{-1} and $f^{-1}(f(x))=x$ for all x in the domain of f.

Example 7

Find the inverse of the function $f(x)=\sqrt{x+2}$ and state the domain and range of both f and f^{-1}.

Example 8

Find the inverse of the function $f(x)=|x|$ if it exists.

Example 9

The function $f(x)=\frac{2}{x+3}, x \neq-3$, is a one-to-one function. Find its inverse.

