Functions and their Graphs

3.4 Operations on Functions and Composition of Functions

September 27, 2010

Adding, Subtracting, Multiplying and Dividing Functions

Function	Notation	Domain
Sum	(f+g)(x) = f(x) + g(x)	$\{$ domain of $f\} \cap \{$ domain of $g\}$
Difference	(f-g)(x) = f(x) - g(x)	$\{$ domain of $f\} \cap \{$ domain of $g\}$
Product	$(f \cdot g)(x) = f(x) \cdot g(x)$	$\{\text{domain of } f\} \cap \{\text{domain of } g\}$
Quotient	$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$	$\{\text{domain of } f\} \cap \{\text{domain of } g\}$
		$\cap \{ g(x) \neq 0 \}$

Example 1

For the functions $f(x) = \sqrt{x-1}$ and $g(x) = \sqrt{4-x}$, determine the sum function, difference function, product function and quotient function. State the domain of the four new functions.

Example 2

Given the functions $F(x) = \sqrt{x}$ and G(x) = |x - 3|, find the quotient function, $\left(\frac{F}{G}\right)(x)$, and state its domain.

Composition of Function

Notation	Words	Definition	Domain
$f \circ g$	f composed	f(g(x))	The set of all real numbers x in
	with g		the domain of g such that $g(x)$
			is also in the domain of f .
$g \circ f$	g composed	g(f(x))	The set of all real numbers x in
	with f		the domain of f such that $f(x)$
			is also in the domain of g.

Example 3

Given the functions $f(x) = x^2 + 1$ and g(x) = x - 3, find $(f \circ g)(x)$.

Example 4

Given the functions $f(x) = \frac{1}{x-1}$ and $g(x) = \frac{1}{x}$, determine $f \circ g$, and state its domain.

Example 6

Given the functions $f(x) = x^2 - 7$ and $g(x) = 5 - x^2$, evaluate

- ▶ f(g(1))
- ► f(g(-2))
- ▶ g(f(3))
- ▶ g(f(-4)