Functions and their Graphs

3.4 Operations on Functions and Composition of Functions

September 27, 2010

Adding, Subtracting, Multiplying and Dividing Functions

Function	Notation	Domain
Sum	$(f+g)(x)=f(x)+g(x)$	$\{$ domain of $f\} \cap\{$ domain of $g\}$
Difference	$(f-g)(x)=f(x)-g(x)$	$\{$ domain of $f\} \cap\{$ domain of $g\}$
Product	$(f \cdot g)(x)=f(x) \cdot g(x)$	$\{$ domain of $f\} \cap\{$ domain of $g\}$
Quotient	$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$	domain of $f\} \cap\{$ domain of $g\}$

Example 1

For the functions $f(x)=\sqrt{x-1}$ and $g(x)=\sqrt{4-x}$, determine the sum function, difference function, product function and quotient function. State the domain of the four new functions.

Example 2

Given the functions $F(x)=\sqrt{x}$ and $G(x)=|x-3|$, find the quotient function, $\left(\frac{F}{G}\right)(x)$, and state its domain.

Composition of Function

Notation	Words	Definition	Domain
$f \circ g$	f composed with g	$f(g(x))$	The set of all real numbers x in the domain of g such that $g(x)$ is also in the domain of f.
$g \circ f$	g composed with f	$g(f(x))$	The set of all real numbers x in the domain of f such that $f(x)$ is also in the domain of g.

Example 3

Given the functions $f(x)=x^{2}+1$ and $g(x)=x-3$, find $(f \circ g)(x)$.

Example 4

Given the functions $f(x)=\frac{1}{x-1}$ and $g(x)=\frac{1}{x}$, determine $f \circ g$, and state its domain.

Example 6

Given the functions $f(x)=x^{2}-7$ and $g(x)=5-x^{2}$, evaluate

- $f(g(1))$
- $f(g(-2))$
- $g(f(3))$
- $g(f(-4)$

