Functions and their Graphs
 3.3 Graphing Techniques: Transformations

September 20, 2010

Vertical Shifts

Assuming that c is a positive constant

$$
\begin{array}{cc}
\text { To Graph } & \text { Shift the Graph of } f(x) \\
f(x)+c & c \text { units upward } \\
f(x)-c & c \text { units downward }
\end{array}
$$

Adding or subtracting a constant outside the function corresponds to a vertical shift that goes with the sign.

Horizontal Shifts

Assuming that c is a positive constant

$$
\begin{array}{cc}
\text { To Graph } & \text { Shift the Graph of } f(x) \\
f(x+c) & c \text { units to the left } \\
f(x-c) & c \text { units to the right }
\end{array}
$$

Adding or subtracting a constant inside the function corresponds to a horizontal shift that goes opposite the sign.

Example 1

Sketch the graphs of the given functions using horizontal and vertical shifts.
(a) $g(x)=x^{2}-1$
(b) $H(x)=(x+1)^{2}$

Example 2

Graph the functions using translations and state the domain and range of each function.
(a) $g(x)=\sqrt{x+1}$
(b) $H(x)=\sqrt{x}-2$

Example 3

Sketch the graph of the function $F(x)=(x+1)^{2}-2$. State the domain and range of F.

Reflection About the Axes

The graph of $-f(x)$ is obtained by reflecting the graph of $f(x)$ about the x-axis.

The graph of $f(-x)$ is obtained by reflecting the graph of $f(x)$ about the y-axis.

Example 4

Sketch the graph of the function $G(x)=-\sqrt{x+1}$.

Example 5

Sketch the graph of the function $f(x)=\sqrt{2-x}+1$.

Vertical stretching and vertical compressing of graphs

The graph of $c f(x)$ is found by:

- Vertically stretching the graph of $f(x)$ if $c>1$
- Vertically compressing the graph of $f(x)$ if $0<c<1$

Note: c is any positive real number.

Example 6

Graph the function $h(x)=\frac{1}{4} x^{3}$.

Horizontal stretching and horizontal compressing of graphs

The graph of $f(c x)$ is found by:

- Horizontally stretching the graph of $f(x)$ if $0<c<1$
- Horizontally compressing the graph of $f(x)$ if $c>1$

Note: c is any positive real number.

Example 7

Given the graph of $f(x)$, graph
(a) $2 f(x)$
(b) $f(2 x)$

