Graphs

2.3 Lines

September 9, 2010

The shortest path between two points is a straight line.
We will discuss

- Characteristics of lines.
- slope
- intercepts
- Types of lines:
- horizontal
- vertical
- falling
- rising
- Relation between lines:
- perpendicular
- parallel

Equation of a Straight line: General Form

If A, B and C are constants and x and y are variables, then the equation

$$
A x+B y=C
$$

is in general form and its graph is a straight line.
Note: A or B (but not both) can be zero.

Example

Consider the equation $2 x-y=-2$. It is a first degree equation, so its graph is a straight line. To graph this line

- list two solutions in a table

\mathbf{x}	\mathbf{y}	(\mathbf{x}, \mathbf{y})
-2	-2	$(-2,-2)$
1	4	$(1,4)$

- plot those points
- use a straight edge to draw the line

The point where a line crosses, or intersects the x-axis is called the x-intercept.

The point where a line crosses, or intersects the y-axis is called the y-intercept.

Example

The graph of the previous line has x-intercept $(-1,0)$ and the y-intercept is $(0,2)$.

Example 1

Determine the x - and y-intercepts (if they exist) for the lines given.
(a) $2 x+4 y=10$
(b) $x=-2$

Slope of a Line

A non-vertical line passing through two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ has slope, m, given by the formula

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, \quad \text { where } x_{1} \neq x_{2}
$$

or

$$
m=\frac{\text { rise }}{\text { run }}=\frac{\text { vertical change }}{\text { horizontal change }}
$$

Example

Find the slope of the line through the points $(-2,-2)$ and $(1,4)$.

When interpreting slope, always read the graph from left to right. Lines fall into one of 4 categories:

```
Line Slope
Rising Positive ( }m>0\mathrm{ )
Falling Negative (m<0)
Horizontal Zero (m=0), hence }y=
Vertical Undefined, hence }x=
```


Example 2

Sketch a line through each pair of points, classify the line as rising, falling, vertical, or horizontal, and determine its slope.
a. $(-1,-3)$ and $(1,1)$
b. $(-3,3)$ and $(3,1)$
c. $(-1,-2)$ and $(3,-2)$
d. $(1,-4)$ and $(1,3)$

Equation of a Straight Line: Slope-Intercept Form

The slope-intercept form for the equation of a non-vertical line is

$$
y=m x+b
$$

Its graph has slope m and y-intercept b.

Example 3

Write $2 x-3 y=15$ in slope-intercept form and graph it.

Example 4

Find the equation of line that has slope $\frac{2}{3}$ and y-intercept $(0,2)$.

Equation of a Straight Line: Point-Slope Form

The point-slope form for the equation of a line is

$$
y-y_{1}=m\left(x-x_{1}\right) .
$$

Its graph passes through the point $\left(x_{1}, y_{1}\right)$, and its slope is m.

Example 5

Find the equation of the line that has slope $-\frac{1}{2}$ and passes through the point ($-1,2$).

Example 6

Find the equation of the line that passes through the points $(-2,-1)$ and $(3,2)$.

Two distinct nonintersecting lines in a plane are parallel.

Definition: Parallel Lines

Two distinct lines in a plane are parallel if and only if their slopes are equal.

Example 7

Determine whether the lines $-x+3 y=-3$ and $y=\frac{1}{3} x-6$ are parallel.

Example 8

Find the equation of the line that passes through the point $(1,1)$ and is parallel to the line $y=3 x+1$.

Two perpendicular lines form a right angle at their point of intersection.

Definition: Perpendicular Lines

Except for the special case of a vertical line and a horizontal line, two lines in a plane are perpendicular if and only if their slopes are negative reciprocals of each other.

Example 8

Find the equation of the line that passes through the point $(3,0)$ and is perpendicular to the line $y=3 x+1$.

Example 11: Application Involving Linear Equations

Suppose that your two neighbors both use the same electrician. One neighbor has a 2 -hour job, which cost her $\$ 100$, and another neighbor had a 3 -hour job that cost him $\$ 300$. Assuming that a linear equation governs the service charge of this electrician, what will your cost be for a 5-hour job?

