Graphs

2.1 Distance and Midpoint

August 31, 2010

- The cartesian plane is a two dimensional region on which we define two perpendicular real number lines.
- The horizontal line is known as the \mathbf{x}-axis whereas the vertical line is known as the \mathbf{y}-axis.
- The axes divide the plane into four quadrants
- Points in the plane are represented by ordered pairs, denoted (\mathbf{x}, \mathbf{y}).

We want to determine the distance between any two points in the plane.

Example 2

Find the distance between the points $(-2,-1)$ and (1,3).

Definition

Distance Formula
The distance d between two points $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ is given by

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} .
$$

Example (3)

Find the distance between $(-3,7)$ and $(5,-2) . \quad d=\sqrt{145}$

Example

Find the distance between $\left(\frac{7}{5}, \frac{1}{9}\right)$ and $\left(\frac{1}{2},-\frac{7}{3}\right)$.

Example

Find the distance between $(3 \sqrt{5},-3 \sqrt{3})$ and $(-\sqrt{5},-\sqrt{3})$.

Definition

The midpoint, $\left(x_{m}, y_{m}\right)$, of the line segment with end points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by

$$
\left(x_{m}, y_{m}\right)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) .
$$

Example

Find the midpoint of the line segment joining the points $(2,6)$ and $(-4,-2)$.
$\left(x_{m}, y_{m}\right)=(-1,2)$

