Equations and Inequalities

1.4 Other Types of Equations

August 25, 2010

Definition

Radical Equations are equations in which the variable is inside a radical.

Examples:

$$\sqrt{x-3} = 2$$
 $\sqrt{2x+3} = x$ $\sqrt{x+2} + \sqrt{7x+2} = 6$

A radical equation may be transformed into a simple linear or quadratic equations. Sometimes the transformation process yields **extraneous solutions**. These are apparent solutions that may solve the transformed problem but are not solutions of the original radical equation.

Example (1)

Solve the equation $\sqrt{x-3} = 2$.

Transform the radical equation into a linear equation...

The solution set is $\{7\}$.

Example (2)

Solve the equation $\sqrt{2x+3} = x$.

Transform the radical equation into a quadratic equation...

The solution set is $\{3\}$.

Example (3)

Solve the equation $\sqrt{x+2} + \sqrt{7x+2} = 6$.

The solution set is $\{2\}$.

PROCEDURE FOR SOLVING RADICAL EQUATIONS

Step 1: Isolate the term with a radical on one side.

Step 2: Raise both (*entire*) sides of the equation to the power that will eliminate this radical, and simplify the equation.

- **Step 3:** If a radical remains, repeat steps 1 and 2.
- Step 4: Solve the resulting linear or quadratic equation.
- Step 5: Check the solutions and eliminate any extraneous solutions.

Equations that are higher order or that have fractional powers often can be transformed into a quadratic equation by introducing a u-substitution. We say that equations are **quadratic in form**.

ORIGINAL EQUATION	SUBSTITUTION	NEW EQUATION
$x^4 - 3x^2 - 4 = 0$	$u = x^2$	$u^2 - 3u - 4 = 0$
$t^{2/3} + 2t^{1/3} + 1 = 0$	$u = t^{1/3}$	$u^2 + 2u + 1 = 0$

PROCEDURE FOR SOLVING EQUATIONS QUADRATIC IN FORM

- **Step 1:** Identify the substitution.
- Step 2: Transform the equation into a quadratic form.
- **Step 3:** Solve the quadratic equation.
- **Step 4:** Apply the substitution to rewrite the solution in terms of the original variable.
- Step 5: Solve the resulting equation.
- **Step 6:** Check the solutions in the original solutions.

Example (4)

Find the solution to the equation $x^{-2} - x^{-1} - 12 = 0$.

The solution set is $\{-\frac{1}{3}, \frac{1}{4}\}$.

Example (5)

Find the solution to the equation $x^{2/3} - 3x^{1/3} - 10 = 0$.

The solution set is $\{-8, 125\}$.

Some equations (both polynomial and with rational exponents) that are factorable can be solved using the zero product property.

Example (6)

Solve the equation $x^{7/3} - 3x^{4/3} - 4x^{1/3} = 0$.

The solution set is $\{-1, 0, 4\}$.

Example (7)

Solve the equation $x^3 + 2x^2 - x - 2 = 0$.

The solution set is $\{-2, -1, 1\}$.