COLLEGE ALGEBRA - MAT 140

FALL 2008 - Review 5
I. True or False problems testing concepts.
II. Given that $\log 5=0.699$ and $\log 4=0.602$, compute

- $\log 20$
- $\log 64$
- $\log \frac{1}{5}$
- $\log 0.2$
III. Write each expression as a sum and/or difference of logarithms. Express powers as factors.
- $\ln \left[\frac{x^{2}-x-2}{(x+4)^{2}}\right]^{\frac{1}{3}}, \quad x>2$
- $\ln \frac{5 x \sqrt{1+3 x}}{(x-4)^{3}}, \quad x>4$
IV. Write each expression as a single logarithm.
- $2 \log _{2}(x+1)-\log _{2}(x+3)-\log _{2}(x-1)$
- $\log \left(\frac{x^{2}+2 x-3}{x^{2}-4}\right)-\log \left(\frac{x^{2}+7 x+6}{x+2}\right)$
V. Solve the equations
- $2^{x+1}=5^{1-2 x}$
- $\ln (x+1)-\ln x=3$
- $2^{2 x}-2^{x+2}-12=0$
- $\log _{\frac{1}{3}}\left(x^{2}+x\right)-\log _{\frac{1}{3}}\left(x^{2}-x\right)=-1$
VI. Find the amount that results from each investment.
- $\$ 500$ invested at 8% compounded quarterly after a period of $2 \frac{1}{2}$ years.
- $\$ 100$ invested at 12% compounded continuously after a period of $3 \frac{3}{4}$ years
- $\$ 200$ invested at 9% compounded weekly after a period of $2 \frac{1}{4}$ years
VII. What rate of interest compounded annually is required to double an investment in 10 years?
VIII. Which is the better deal, 9% compounded quarterly or 9.24% compounded annually?
IX. How long will it take for an initial investment of $\$ 10,000$ to grow to $\$ 25,000$. Assume a rate of interest of 6% compounded continuously.

