## **COLLEGE ALGEBRA - MAT 140**

## FALL 2008 - REVIEW

I. Simplify and write using positive exponents:  $\frac{4x^{-2}(yz)^{-1}}{2^3x^4y}$ 

**II.** Add.  $(6x^5 + x^3 + x) + (5x^4 - x^3 + 3x^2)$ 

**III.** Expand (multiply)  $(2x+1)^3$ 

**IV.** Factor completely  $x^4 + x^3 + x + 1$ .

**V.** Find the least common denominator and simplify  $\frac{4x}{x^2-4} - \frac{2}{x^2+x-6}$ .

VI. Find the length and the mid point of the line segment given in the Figure 1.



**VII.** An open box is to be constructed from a square piece of sheet metal by removing a square of side 1 foot from each corner an turning up the edges. If the box is to hold 4 cubic feet, what should be the dimension of the sheet metal?

**VIII.** Use a graphing utility to approximate the real solutions, if any, of  $x^4 - 5x^2 + 2x + 5 = 0$ . Round your answers to two decimal places. Sketch your graph in the given grid.



Figure 2:

**IX.** Find the real solutions of the following equations:

(i)  $3x^4 - 2x^2 - 1 = 0$ 

(ii) 
$$\sqrt{3x+7} + \sqrt{x+2} = 1$$

**X.** Betsy, a recent retiree, requires \$6000 per year in extra income. She has \$50,000 to invest and can invest in B-rated bonds paying 15% per year or in certificate of deposit (CD) paying 7% per year. How much money should be invested in each to realize exactly \$6000 in interest per year?

**XI.** Find an equation for the line that contains the point (1, -2) and is parallel to the line y = 2x-3.

**XII.** Find an equation for the line that contains the point (1, -2) and is perpendicular to the line y = 2x - 3.

**XIII.** Find the center (h, k) and the radius r of the circle  $x^2 + y^2 - x + 2y + 1 = 0$ .