13.6 MEASURES OF DISPERSION

Mathematical Concepts

April 8, 2009

Measures of dispersion are used to indicate the spread of data. The measures of dispersion discussed are

- the range
- the standard deviation

The range is the difference between the highest and lowest values. It indicates the total spread of the data.

Range $=$ highest value - lowest value

The amount of carbohydrates, in grams, of 12 different soft drinks is given below. Determine the range of of these data.
$26, \quad 27, \quad 31, \quad 35, \quad 31, \quad 29, \quad 24, \quad 26, \quad 27, \quad 25, \quad 30,31$

Solution:

$$
\text { Range }=\text { highest value }- \text { lowest value }=35-24=11 .
$$

The standard deviation measures how much the data differ from the mean.

- It is symbolized by the letter s or by the Greek letter sigma, σ.
- The s is used when the standard deviation of a sample is calculated.
- The σ is used when the standard deviation of the entire population is calculated.

What value is desirable? A very small standard deviation or a larger spread of data?

- Consider a cereal box that is to contain 8 oz of cereal. If the amount of cereal put into the box varies too much sometimes under filling, sometimes over filling - the manufacturer would be in trouble with consumer groups and government agencies.
- Intelligence quotients (IQs) are expected to exhibit a considerable spread about the mean because everyone is different.

To Determine the Standard Deviation of a Set of Data

1. Determine the mean of the set of data.
2. Make a chart having the three columns:

$$
\text { Data } \quad \text { Data }- \text { Mean } \quad(\text { Data }- \text { Mean })^{2}
$$

3. List the data vertically under the column marked Data.
4. Subtract the mean from each piece of data and place the difference in the Data - Mean column.
5. Square the values in the Data - Mean column and record these values in the $(\text { Data }-M e a n)^{2}$ column.
6. Determine the sum of the values in the (Data - Mean $)^{2}$ column.
7. Divide the sum obtained in step 6 by $n-1$, where n is the number of pieces of data.
8. Determine the square root of the number obtained in step 7. This number is the standard deviation, s, of the set of data.

A veterinarian in an animal hospital recorded the following life spans of selected Labrador retrievers (to the nearest year):

$$
7, \quad 9, \quad 11, \quad 15, \quad 18, \quad 12
$$

Determine the standard deviation of the life spans.

Solution:

First determine the mean:

$$
\bar{x}=\frac{\sum x}{n}=\frac{7+9+11+15+18+12}{6}=\frac{72}{6}=12
$$

Next construct a table with three columns.
Data Data - Mean $\quad(\text { Data }- \text { Mean })^{2}$

$$
7 \quad 7-12=-5
$$

$$
9 \quad 9-12=-3
$$

$$
11 \quad 11-12=-1
$$

$$
12 \quad 12-12=0
$$

$$
15 \quad 15-12=3
$$

$$
18 \quad 18-12=6
$$

Data	Data - Mean	$(\text { Data }- \text { Mean })^{2}$
7	$7-12=-5$	$(-5)^{2}=(-5)(-5)=25$
9	$9-12=-3$	$(-3)^{2}=(-3)(-3)=9$
11	$11-12=-1$	$(-1)^{2}=(-1)(-1)=1$
12	$12-12=0$	$(0)^{2}=(0)(0)=0$
15	$15-12=3$	$(3)^{2}=(3)(3)=9$
18	$18-12=6$	$(6)^{2}=(6)(6)=36$
Sum	0	

Dividing the sum of $(\text { Data }-M e a n)^{2}$ by $n-1$

$$
\frac{80}{5}=16
$$

Finally taking the square root of this number

$$
s=\sqrt{16}=4 .
$$

The standard deviation is 4 .

A formula for determining the standard deviation
Let x be the individual data and \bar{x} the mean. Then

$$
s=\sqrt{\frac{\Sigma(x-\bar{x})^{2}}{n-1}}
$$

The following are the prices of nine stocks on the New York Stock Exchange. Determine the standard deviation of the prices.
$\begin{array}{lllllll}\$ 17, & \$ 28, & \$ 32, & \$ 36, \quad \$ 50, & \$ 52, & \$ 66, & \$ 74,\end{array} 104$

Solution:

The mean, \bar{x} is

$$
\begin{aligned}
\bar{x} & =\frac{\Sigma x}{n} \\
& =\frac{17+28+32+36+50+52+66+74+104}{9} \\
& =\frac{459}{9}=51
\end{aligned}
$$

\mathbf{x}	$\mathbf{x}-\overline{\mathbf{x}}$	$(\mathbf{x}-\overline{\mathbf{x}})^{\mathbf{2}}$
17	-34	156
28	-23	529
32	-19	361
36	-15	225
50	-1	1
52	1	1
66	15	225
74	23	529
104	53	2809
Sum	$\mathbf{0}$	$\mathbf{5 8 3 6}$

$$
\begin{aligned}
s & =\sqrt{\frac{\Sigma(x-\bar{x})^{2}}{n-1}} \\
& =\sqrt{\frac{5836}{8}} \\
& =\sqrt{729.5} \\
& \approx 27.01
\end{aligned}
$$

The standard deviation, to the nearest tenth, is 27.01 .

